

Justification of Seizure Management based on EEG Findings: Focusing on Epilepsy Syndromes

Anannit Visudtibhan, MD

Division of Neurology, Department of Pediatrics, Faculty of Medicine Ramathibodi Hospital, Mahidol University, Bangkok, Thailand

Myoclonic Seizure

- A single or series of jerks (brief muscle contractions)
- · Duration in each jerk: typically milliseconds
- · Status epilepticus
 - Myoclonic status epilepticus: ongoing (> 30 minutes) irregular jerking, often with partially retained awareness
 - Generalized clonic seizure:
 - · lost of consciousness
 - · jerking is sustained & rhythmic
- Myoclonic seizures can result in a "drop attack" (other causes of drop attacks: tonic, atonic, myoclonic-atonic seizures)

https://www.epilepsy.com/article/2016/12/2017-revised-classification-seizures Robert S. Fisher MD, PhD, Patricia O. Shafer RN, MN, & Carol D'Souza MA Psych on 12/2016

ILAE POSITION PAPER

ILAE classification of the epilepsies: Position paper of the ILAE Commission for Classification and Terminology

^{1,2,3}Ingrid E. Scheffer, ¹Samuel Berkovic, ⁴Giuseppe Capovilla, ⁵Mary B. Connolly, ⁶Jacqueline French, ¹Laura Guilhoto, ^{8,7}Edouard Hirsch, ¹⁰Satish Jain, ¹¹Gary W. Mathern, ¹²Solomon L. Moshė, ¹³Oughas R. Nordli, ¹⁴Emilio Peruca; ¹³Torbjörn Tomson, ¹⁴Samuel Wiebe, ¹⁷Yue-Hua Zhang, and ^{18,18}Sameer M. Zuberi

Epilepsia, **(*):1-10, 2017 doi: 10.1111/epi.13709

ILAE POSITION PAPER

Operational classification of seizure types by the International League Against Epilepsy: Position Paper of the ILAE Commission for Classification and Terminology

"Robert S. Fisher, †]. Helen Cross, ‡Jacqueline A. French, §Norimichi Higurashi, ¶Edouard Hirsch, #Floor E. Jansen, **Lleven Lagae, ††Solomon L. Moshe, ‡‡Jukka Pettola, §§Eliane Roulet Perez, ¶†jingrid E. Scheffer, and ###**Sameer M. Zuberi

Epilepsia, **(*):1-9, 2017 doi: 10.1111/epi.13670

Myoclonic Seizure: D/Dx.

- · Non-epileptic seizures
- · Non-epileptic myoclonus
- · Movement disorders
- Seizures
 - Myoclonic atonic seizure
 - Atonic seizure
 - Focal motor with negative myoclonus

Myoclonic Seizure & Related Epilepsy Syndromes: "Infancy"

- · Early myoclonic epilepsy
- Myoclonic epilepsy in Infancy
- Metabolic encephalopathy
 - Pyridoxine and pyridoxal-5-phosphate disorders
 - Non-ketotic hyperglyinemia
 - Amino and organic acidopathies
 - Urea cycle disorders
 - Mitochondrial disorders
 - Molybdemum cofactor deficiency
 - Sulfite oxidase deficiency, etc.
- Myoclonic epilepsy in nonprogressive disorders:
 - Structural, chromosomal, genetic, etc....
- Ohtahara syndrome
- Dravet syndrome

Myoclonic Seizure & Related Epilepsy Syndromes: "Toddlers & Children"

- Dravet syndrome
- · Lennox-Gastaut syndrome
- Epilepsy with myoclonic-atonic seizures
- Epilepsy with myoclonic absence
- · Progressive myoclonic epilepsy
- · Juvenile myoclonic epilepsy

Myoclonic Seizure & Related Epilepsy Syndromes

- · Early myoclonic epilepsy
- · Lennox-Gastaut syndrome
- Dravet syndrome
- · Epilepsy with myoclonic-atonic seizures
- · Juvenile myoclonic epilepsy
- · Progressive myoclonic epilepsy

Early Myoclonic Epilepsy

- Frequent intractable seizures & severe early encephalopathy in the first two month of life (50% in 10 days)
- · Seizure:
 - Frequent fragmentary erratic myoclonus, migrating from one part of body towards others, asynchronously
 - In later stage:
 - Focal seizure.
 - · Epileptic spasms, or
 - · Generalized tonic-clonic

Early Myoclonic Epilepsy EEG

Background EEG

- Abnormal in all stages
- With a suppression-burst pattern
- High voltage bursts (150-300 uV) of spikes or sharp and slow waves, lasting 1-5 sec. with inter-burst intervals of 3-10 sec.

- May evolve to hypsarrhythmia pattern (as seen in West syndrome) or multifocal spikes and sharp waves at 3-4 month-old

Lennox-Gastaut Syndrome

- Onset of seizures from age 1 to 7 yrs (peak 3 to 5 yrs)
- Triad
 - Multiple types of intractable seizures (tonic seizure in sleep)
 - Cognitive and behavioral impairments
 - EEG with diffuse slow spike-and-wave and paroxysms of fast activity
- Up to 30% of cases of LGS evolve from earlier onset epilepsy syndromes
- Causes
 - Structural abnormality 70%
 - Genetics and others 30%

Lennox-Gastaut Syndrome

Seizure type

- Tonic seizure in sleep
- Other seizure types
 - GTC, atypical absence, atonic, focal, epileptic spasms
 - Myoclonic
 - (if predominate, consider Dravet syndrome)
 - Myoclonic-atonic (if predominate, consider Epilepsy with Myoclonic-atonic seizure)

Lennox-Gastaut Syndrome

EEG background

- Abnormal in all cases
- Generalized or focal slowing
- Bi-parietal rhythmic theta → Epilepsy with myoclonic-atonic seizure

Interictal

- Focal or multifocal spike-and-wave or sharp-slow waves (anterior predominance)
- Slow (<2.5 Hz) spike-and-wave and paroxysmal fast activity (10 Hz or greater) in slow sleep (A must finding)
- Periods of suppression may present

Ictal EEG patterns

- According to individual seizure types

Dravet Syndrome

(Severe Myoclonic Epilepsy of Infancy, SMEI)

- Typically presents in the first year of life in a normal child age between 1 - 4 yrs
- · Onset of seizures typically around age of 6 mo.
- · Prolonged Seizure with febrile and afebrile,
 - Focal (usually hemiclonic -> sustained rhythmic jerking rapidly involves one side of the body at seizure onset)
 - Generalized tonic-clonic seizures
 - Other seizure types: myoclonic, atypical absence seizures
- · Seizures are usually intractable and from age of one yr
- · Cognitive & behavior impairments
- · Clinical diagnosis:
 - Abnormalities in Na channel gene SCN1A (75% of cases)

Bureau M, Dalla Bernardina B. Epilepsia 2011;52 Suppl 2:13-23

Dravet Syndrome

(Severe Myoclonic Epilepsy of Infancy, SMEI)

- Background EEG
 - Typically normal in during first year of age
 - Post-ictal slowing at initial stage
- Diffuse slowing may present
- Interictal
 - Generalized spike-and-wave and multifocal discharges
- Photic and pattern stimulations
 - Precipitate generalized spike-and-wave, with or without seizure
- Ictal
 - According to the type of seizure
- Should not presence: diffuse electrodecremental patterns or paroxysmal fast activity (seen in LGS)

Bureau M, Dalla Bernardina B. Electroencephalographic characteristics of Dravet syndrome. Epilepsia 2011;52 Suppl 2:13-23.

Epilepsy with Myoclonic-atonic Seizures (Epilepsy with myoclonic astatic seizures, Doose syndrome)

- Onset between 6 mo. and 6 yr. (peak 2 4 years)
- 2/3 had febrile seizures and generalized tonic-clonic seizures preceding to onset of myoclonic-atonic / atonic seizures
- Glucose transporter disorders must be considered and excluded

Epilepsy with Myoclonic-atonic Seizures (Epilepsy with myoclonic astatic seizures, Doose syndrome)

Background

May be normal or show generalized slowing. Background bi-parietal theta

Epilepsy with Myoclonic-atonic Seizures (Epilepsy with myoclonic astatic seizures, Doose syndrome)

Background

May be normal or show generalized slowing. Background bi-parietal theta

Interictal

Generalized spike-and-wave and polyspike-and-wave

Photic stimulation

may trigger generalized spike-and-wave and polyspike-and-wave, and myoclonic-atonic seizures

· Sleep deprivation & sleep

Fragmented generalized spike-and-wave

Ictal

Myoclonic component is associated with a generalized spike or polyspikes

 Atonic component is associated with the after-going high voltage slow wave

Juvenile Myoclonic Epilepsy

- · Characterized by
 - Myoclonic seizures
 - Generalized tonic-clonic seizures
- · Onset between 8 (or 10) to 25 years of age
 - Approximately 5% evolve from childhood absence epilepsy
 - Both males & females are equally affected
- · Antecedent and birth history: normal
- · Development and cognition: typically normal
- Neurological examination and head size: normal
- · History of febrile seizures: 5-10%

https://www.epilepsydiagnosis.org/syndrome/jme-overview.htm Yacubian EM. Seizure. 2017;44:48-52

Juvenile Myoclonic Epilepsy

- Background: normal
- Interictal
 - Generalized spike-and-wave and polyspike-and-wave, usually at 3.5-6Hz
- Photic stimulation
- Photoparoxysmal response in 1/3 of patients
- Hyperventilation
 - Generalized spike-and-wave or polyspike-and-wave and clinical absences
- Ictal
 - Myoclonic seizure: a single generalized polyspike-and-wave
 - Generalized tonic seizure: generalized fast rhythmic spikes
 - Clonic jerks: bursts of spikes and after-coming slow waves

Progressive Myoclonus Epilepsy

- Patient with myoclonic seizures, with or without generalized tonic-clonic seizures with
 - Progressive cognitive decline
 - Myoclonus resulting in progressive motor impairment
 - Cerebellar signs
 - Background slowing on EEG (increasing over time)
 - Myoclonus refractory to trials of appropriate AEDs

Genton P, Striano P, Minassian BA. Epileptic Disord. 2016;18(S2):3-10 Kälviäinen R. Semin Neurol. 2015;35(3):293-9

Progressive Myoclonus Epilepsy

- Neurodegenerative conditions
 - · Unverricht-Lundborg disease, Lafora disease,
 - juvenile neuroaxonal dystrophy, pantothenate-kinase associated neurodegeneration, etc..
- · Metabolic disorders
 - Mitochondrial disorders (MERRF), mitochondrial disorders (POLG1, MELAS, others),
 - Neuronal ceroid lipofuscinosis, sialidosis, GM2 gangliosidoses, tetrahydrobiopterin deficiency, non-infantile neuronopathic Gaucher's disease and Niemann Pick type C.
- Immune etiologies

Genton P, Striano P, Minassian BA. Epileptic Disord. 2016;18(S2):3-10.
Kälviäinen R. Semin Neurol. 2015;35(3):293-9.

Progressive Myoclonus Epilepsy

- Background may be normal at onset, progressive slowing of the background occurs over time.
- Interictal EEG findings vary and depend on underlying etiology
- Ictal
 - Myoclonic seizure: a single generalized polyspike-and-wave
 - Tonic seizure: generalized fast rhythmic spikes
 - Clonic jerks: bursts of spikes and after-coming slow waves

Justification of Seizure Management based on EEG Findings: Focusing on Epilepsy Syndromes

- · Decision Making
 - Basic knowledge on seizure types, epilepsy syndrome
 - Good history taking and collection of evidence supporting diagnosis
 - Application of EEG recording, pertaining to the context and reality
 - Further stepwise investigations according to differential diagnosis

Diagnostic Investigations in Different Progressive Myoclonus Epilepsies (PMEs) Univerricht-Lundborg disease (EPM1) Lafora body disease (EPM2) Gene test: EPM1 (CSTB) mutation analysis Skin biopsy: Lafora bodies Gene tests: EPM2A or EPMP2B(NHLRC1) mutation analysis 3. Neuronal ceroid lipofuscinoses (NCL) Skin biopsy: Granular osmophilic deposit Leukocyte enzyme analyses: PPT1,TPP1, CTSD Gene tests: CLN1/PPT, CLN2/TPP1, CLN3, CLN4/ DNAJC5, CLN5, CLN6, CLN7/MFSD8, CLN8, CLN10/CTSD, CLN11/GR CLN12/ATP13A2, CLN13/CTSF, CLN14/KCTD7 mutation an Gene test: NEU1 mutation analysis Muscle biopsy: Ragged-red fibers Gene test: MT-TK mutation analy 6. Type 3 neuronopathic Gaucher disease Leukocyte enzyme analysis (β-glucocerebrosidase) Gene test: GBA mutation analysis Gene test: DRPLA mutation analy 8. Action myoclonus-renal failure syndrome (AMRF; EPM4) Gene test: SCARB2/LIMP2 mutation analysis Gene test: PRICKLE1 mutation analysis Gene test: GO5R2 mutation analysis ารให้ความรู้ทางการแพทย์ไม่มีกา 10. North Sea PME (EPM6) Kälviäinen R. Sem Neurol 2015;35:293-29

AEDs for Treatment of Myoclonic Seizures Epileptic Syndrome Therapy Remission VPA,TPM, BZD, Stiripentol,LTG, LEV, SMEI PER. KD MAE VPA, LTG, BZD, LEV, PER, ZNS, KD Vary (30-100 months) LGS Polytherapy, KD, Sx Never VPA, LTG, LEV, PER, TPM, ZNS IMF With treatment PMF Polytherapy Stephani U. Epilepsia 2006;47(Suppl.2):53-55. Baykan B, Wolf P. Seizure 2017;49:36-41 Yacubian EM. Seizure 2017:44:36-41

Treatment for JME					
Antiepileptic drug	Daily usual doses in adults	Evidence			
Valproate	400-3000 mg	Most effective choice based on clinical experience; positive psychotropic effects			
Phenobarbital	60-180 mg	Before the availability of VPA, efficacy in up to 80% of patients			
Levetiracetam	500-3000 mg	Likely to be less efficacious than VPA in controlling absence seizures, which coexist with other seizure types in around 30% of patients with JME			
Lamotrigine	100-400 mg	Probably less effective than VPA. Synergistic effect with VPA. May worsen myoclonic seizures			
Topiramate	100-400 mg	May be effective in GTCS			
Zonisamide	100-500 mg	May be effective in myoclonia and GTCS			
Perampanel	6-12 mg	May be effective as adjunctive in GTCS			
Clobazam	10-40 mg	May be effective as adjunctive			
Clonazepam	4–8 mg	May be effective as adjunctive			
Acetazolamide	500-1000 mg	May be effective as adjunctive			

Drugs useful in progressive	Drugs that exacerbate
myoclonic epilepsies	myoclonus
Sodium valproate*	Lamotrigine
Levetiracetam	Phenytoin
Topiramate	Carbamazepine
Clonazepam	Oxcarbazepine
Zonisamide	Tiagabine
Phenobarbital	Vigabatrin

Treatment Options in Common Encephalopathic Epilepsy Syndromes				
Epilepsy Syndrome	Hx Rx	US FDA Approved	Experiment Rx	
West syndrome	ACTH gel, Vigabatrin	ACTH gel, Vigabatrin	Cannabidiol	
Dravet Syndrome	Valproate, Stiripentol, Clobazam, Topiramate		Cannabidiol, Fenfluramine, Stiripentol	
LGS	Valproate	Felbamate, Topiramate, Lamotrigine, Clobazam, Rufinamide	Cannabidiol	
Mudigoudar E, et al. Seminar Ped Neurol 2016;23:167-1				

Selection of AEDs "Factors for Decision Making"

- Safety & tolerability
- Pharmacokinetic property
- Availability
- Pre-existing illness
- Physician's experiences